Influence of substrate density and cropping conditions on the cultivation of sun mushroom
- Pardo-Giménez, Arturo 1
- Carrasco, Jaime 2
- Pardo, Jose E. 3
- Álvarez-Ortí, Manuel 3
- Zied, Diego C. 4
- 1 Centro de Investigación, Experimentación y Servicios del Champiñón (CIES), C/ Peñicas s/n, Apartado 63. 16220 Quintanar del Rey (Cuenca)
- 2 University of Oxford, Dept. of Plant Sciences, S Parks Rd, Oxford, OX1 3RB
- 3 Universidad de Castilla-La Mancha, Escuela Técnica Superior de Ingenieros Agrónomos y de Montes, Campus Universitario, s/n. 02071 Albacete
- 4 Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Tecnológicas (FCAT), Câmpus de Dracena, Rod. Cmte João Ribeiro de Barros, km 651, Bairro das Antas, 17900-000 Dracena
ISSN: 1695-971X, 2171-9292
Año de publicación: 2020
Volumen: 18
Número: 2
Tipo: Artículo
Otras publicaciones en: Spanish journal of agricultural research
Resumen
Aim of the study: To evaluate agronomical features demanded by the sun mushroom (Agaricus subrufescens) in order to optimise the commercial cultivation of this worldwide demanded medicinal mushroom.Area of study: The study was carried out in Castilla-La Mancha (Spain), the second most productive region of cultivated mushrooms in Spain.Material and methods: In this work we summarise the results obtained while evaluating the performance of sun mushroom crops (A. subrufescens). Two agronomical traits have been evaluated, the effect on the productive outputs of applying five different compost filling rates of high N substrate (yield and BE of the compost), and the influence of implementing two different conditions for the induction to fructification on the analytical properties of the harvested mushrooms. Besides, two commercial compost formulations (CM and VC) obtained from local providers have been used.Main results: The number of sporophores harvested and the yield per unit area increased with rising density of compost load, although the biological efficiency was not significantly modified. Compost fill rate of 70 kg m-2 provided an average yield of 13.33 kg m-2 and BE=55.45 kg dt-1, generally higher than those values reported in the literature. The proposed moderate slow induction provides better yields, particularly in the last flushes, and larger sporophores. Proximate analysis of harvested sporophores has not shown significant differences between treatments or factors.Research highlights: As guidance for growers, compost fill weight between 65 and 70 kg per m2 of productive area with a moderate slow induction to fructification is presented as the best option for commercial production under controlled environmental conditions.
Información de financiación
Funda??o de Amparo ? Pesquisa do Estado de S?o Paulo, Brazil- 2018/21492-2.Referencias bibliográficas
- ANKOM, 2008. Crude fiber analysis in feeds by filter bag technique. ANKOM Technol. Meth. 7, AOCS Approved Procedure Ba 6a-05. Macedon. ANKOM Technol., NY, USA.
- ANKOM, 2009. Rapid determination of oil/fat utilizing high temperature solvent extraction. ANKOM Technol. Meth. 2, AOCS Offic. Procedure Am 5-04. Macedon. ANKOM Technol., NY, USA.
- Buth J, 2017. Compost as a food base for Agaricus bisporus. In: Edible and medicinal mushrooms. Technology and applications; Zied DC, Pardo-Giménez A (eds). John Wiley & Sons Ltd, Chichester, West Sussex, UK, pp: 129-147. https://doi.org/10.1002/9781119149446.ch6
- Carrasco J, Navarro MJ, Santos M, Diánez F, Gea FJ, 2016. Incidence, identification and pathogenicity of Cladobotryum mycophilum, causal agent of cobweb disease on Agaricus bisporus mushroom crops in Spain. Ann Appl Biol 168 (2): 214-224. https://doi.org/10.1111/aab.12257
- CEN, 2001. Soil improvers and growing media. Determination of nitrogen. Part 1: Modified Kjeldahl method. European Standard EN 13654-1:2001. European Committee for Standardization, Brussels.
- Chang ST, Miles PG, 2004. Agaricus blazei and Grifola frondosa - Two important medicinal mushrooms. In: Mushrooms. Cultivation, nutritional value, medicinal effect, and environmental impact; CRC Press, 2nd ed. Boca Raton, FL, USA: pp: 373-381. https://doi.org/10.1201/9780203492086.ch20
- Colauto NB, Linde GA, 2012. Avances sobre el cultivo del "Cogumelo-do-sol" en Brasil. In: Hongos comestibles y medicinales en Iberoamérica: investigación y desarrollo en un entorno multicultural; Sánchez JE, Mata G (eds). Colegio de la Frontera Sur, Tapachula, Chiapas, Mexico. pp: 121-135.
- Colauto NB, Silveira AR, Eira AF, Linde GA, 2010. Alternative to peat for Agaricus brasiliensis yield. Bioresour Technol 101 (2): 712-716. https://doi.org/10.1016/j.biortech.2009.08.052
- Den Ouden M, 2020. Compost activity. https://www.mushroombusiness.com/nl/tips/compost-activity-0. [28 Feb 2020].
- Dias ES, Zied DC, Alm G, Rinker DL, 2014. Supplementation of compost for Agaricus subrufescens cultivation. Ind Biotechnol 10 (2): 130-132. https://doi.org/10.1089/ind.2013.0040
- Eira AF, 2003. Cultivo do cogumelo medicinal Agaricus blazei (Murrill) ss. Heinemann o Agaricus brasiliensis (Wasser et al.). Aprenda Fácil Editora, ViÇosa, MG, Brazil. 396 pp.
- Eira AF, Nascimento JS, Colauto NB, Celso PG, 2005. Tecnologia de cultivo do cogumelo medicinal Agaricus blazei (Agaricus brasiliensis). RAC 18 (3): 45-49.
- Firenzouli F, Gori L, Lombardo G, 2008. The medicinal mushroom Agaricus blazei Murrill: review of literature and pharmaco-toxicological problems. Evid.-based Complement Altern Med 5 (1): 3-15. https://doi.org/10.1093/ecam/nem007
- FOSS, 2003. The determination of nitrogen according to Kjeldahl using block digestion and steam distillation. Foss Application Note AN 300. FOSS Tecator AB, Höganäs, Sweden.
- Gregori A, Pahor B, Glaser R, Pohleven F, 2008. Influence of carbon dioxide, inoculum rate, amount and mixing of casing soil on Agaricus blazei fruiting bodies yield. Acta Agric Slov 91 (2): 371-378. https://doi.org/10.2478/v10014-008-0017-2
- Henriques GS, Simeone MLF, Amazonas MALA, 2008. Avaliação in vivo da qualidade protéica do champignon do Brasil (Agaricus brasiliensis Wasser et al.). Revista de Nutrição 21 (5): 535-543. https://doi.org/10.1590/S1415-52732008000500006
- Kerrigan RW, 2005. Agaricus subrufescens, a cultivated edible and medicinal mushroom, and its synonyms. Mycologia 97: 12-24. https://doi.org/10.1080/15572536.2006.11832834
- Kopytowski Filho J, Minhoni MTA, 2007. Produtividade e eficiência biológica da linhagem ABL 99/30 de Agaricus blazei em três tipos de compostos e em dois ambientes de cultivo. Energia na Agricultura 22 (4): 65-78.
- Kopytowski Filho J, Minhoni MTA, Andrade MCN, Zied DC, 2008. Effect of compost supplementation (soybean meal and ChamFood) at different phases (spawning and before casing) on productivity of Agaricus blazei ss. Heinemann (A. brasiliensis). Mush Sci 17: 260-271
- Largeteau ML, Llarena-Hernández RC, Regnault-Roger C, Savoie JM, 2011. The medicinal Agaricus mushroom cultivated in Brazil: biology, cultivation and non-medicinal valorisation. Appl Microbiol Biot 92 (5): 897-907. https://doi.org/10.1007/s00253-011-3630-7
- Lau O, 1982. Methods of chemical analysis of mushrooms. In: Tropical mushrooms. Biological nature and cultivation methods; Chang ST, Quimio TH (eds.). The Chinese Univ. Press, Hong Kong, pp: 87-116.
- Lisiecka J, Sobieralski K, Siwulski M, Jasinska A, 2013. Almond mushroom Agaricus brasiliensis (Wasser et al.) - Properties and culture conditions. Acta Sci Pol, Hortorum Cultus 12 (1): 27-40.
- Llarena-Hernández RC, Largeteau ML, Farnet AM, Minvielle N, Regnault-Roger C, Savoie JM, 2011. Phenotypic variability in cultivars and wild strains of Agaricus brasiliensis and Agaricus subrufescens. In: Mushroom biology and mushroom products. Proc 7th Int Conf on Mushroom Biology and Mushroom Products; Savoie JM, Foulongne-Orio M, Largeteau M, Barroso G (eds.). INRA-Mycologie et Sécurité des Aliments, France, pp: 39-49.
- Llarena-Hernández RC, Largeteau ML, Farnet AM, Foulongne-Oriol M, Ferrer N, Regnault-Roger C, Savoie JM, 2013. Potential of European wild strains of Agaricus subrufescens for productivity and quality on wheat straw based compost. World J Microbiol Biotechnol 29 (7): 1243-1253. https://doi.org/10.1007/s11274-013-1287-3
- Llarena-Hernández RC, Largeteau ML, Ferrer N, Regnault-Roger C, Savoie JM, 2014. Optimization of the cultivation conditions for mushroom production with European wild strains of Agaricus subrufescens and Brazilian cultivars. J Sci Food Agric 94: 77-84. https://doi.org/10.1002/jsfa.6200
- MacCanna C, 1984. Improving compost productivity. In: Commercial mushrooom production. An Foras Talúntais, Dublin, Ireland, pp: 59-69.
- Mantovani TRD, Linde GA, Colauto NB, 2007. Effect of the addition of nitrogen sources to cassava fiber and carbon-to-nitrogen ratios on Agaricus brasiliensis growth. Can J Microbiol 53 (1): 139-143. https://doi.org/10.1139/w06-112
- Martos ET, Zied DC, Junqueira PPG, Rinker DL, Da Silva R, Toledo RCC, Dias ES, 2017. Casing layer and effect of primordia induction in the production of Agaricus subrufescens mushroom. ANRES 51 (4): 231-234. https://doi.org/10.1016/j.anres.2017.04.003
- Mendonça M, Kasuya MC, Cadorin A, Vieira AJ, 2005. Agaricus blazei cultivation for a living in Brazil. In: Mushrooms growers' handbook 2. Mushworld, Seoul, Korea, pp: 208-218.
- Miles PG, Chang ST, 1997. The chemical composition of fungal cells. Useful generalizations. In: Mushroom biology. Concise basics and current developments. World Sci Publ Co Pte Ltd, Singapore, Republic of Singapore. pp: 33-35. https://doi.org/10.1142/3296
- Minhoni MTA, Kopytowski Filho J, Andrade MCN, 2005. Cultivo de Agaricus blazei Murrill ss. Heinemann. 3. Fundação de Estudos e Pesquisas Agrícolas e Florestais, Botucatu. 101 pp.
- Navarro MJ, Gea FJ, Pardo-Giménez A, Martínez A, Raz D, Levanon D, Danay O, 2020. Agronomical valuation of a drip irrigation system in a commercial mushroom farm. Sci Hortic 265: 109234. https://doi.org/10.1016/j.scienta.2020.109234
- Pardo-Giménez A, Figueirêdo VR, Dias ES, Pardo-González JE, Álvarez-Ortí M, Zied DC, 2013. Análisis proximal de carpóforos de Agaricus subrufescens Peck producidos sobre diferentes capas de cobertura. ITEA-Inf Tecn Econ Agr 109 (3): 290- 302. https://doi.org/10.12706/itea.2013.017
- Pardo-Giménez A, Pardo-González JE, Figueirêdo VR, Zied DC, 2014. Adaptability of Brazilian strains of Agaricus subrufescens Peck to fruiting on various casing materials in commercial crops. Rev Iberoam Micol 31 (2): 125-130. https://doi.org/10.1016/j.riam.2013.05.002
- Pardo-Giménez A, Catalán L, Carrasco J, Álvarez-Ortí M, Zied DC, Pardo JE, 2016. Effect of supplementing crop substrate with defatted pistachio meal on Agaricus bisporus and Pleurotus ostreatus production. J Sci Food Agric 96 (11): 3838-3845. https://doi.org/10.1002/jsfa.7579
- Schisler LC, 1982. Influence of cultural practices on mushroom yield response to delayed-release nutrients. In: Penn State Handbook for Commercial Mushroom Growers; Wuest PJ, Bengtson GG (eds.). The Pennsylvania State University, University Park, PA, USA, pp: 49-53.
- Siqueira FG, Martos ET, Silva EG, Silva R, Dias ES, 2011. Biological efficiency of Agaricus brasiliensis cultivated in compost with nitrogen concentrations. Hortic Bras 29 (2): 157-161. https://doi.org/10.1590/S0102-05362011000200004
- Sousa MAC, Zied DC, Marques SC, Rinker DL, Alm G, Dias ES, 2016. Yield and enzyme activity of different strains of almond mushroom in two cultivation systems. Sydowia 68: 35-40.
- Sullivan DM, 1993. Proximate and mineral analysis. In: Methods of analysis for nutrition labeling; Sullivan DM, Carpenter DE (eds). AOAC Int, Arlington, VA, USA, pp: 105-109.
- Van Gerwen H, 2019. Filling depth and quality. https://www.mushroombusiness.com/tips/filling-depth-and-quality [5 Nov 2019].
- Wasser SP, 2017. Medicinal properties and clinical effects of medicinal mushrooms. In: Edible and medicinal mushrooms. Technology and applications; Zied DC, Pardo-Giménez A (eds). John Wiley & Sons Ltd, Chichester, West Sussex, UK, pp: 503-540. https://doi.org/10.1002/9781119149446.ch22
- Win TT, Ohga S, 2018. Study on the cultivation of Agaricus blazei (almond mushroom) grown on compost mixed with selected agro-residues. Adv Microbiol 8: 778-789. https://doi.org/10.4236/aim.2018.810051
- Wisitrassameewong K, Karunarathna SC, Thongkland N, Zhao R, Callac P, Moukha S, Férandon C, Chukeatirote E, Hyde KD, 2012. Agaricus subrufescens: A review. Saudi J Biol Sci 19 (2): 131-146. https://doi.org/10.1016/j.sjbs.2012.01.003
- Zied DC, Pardo-Giménez A, Savoie JM, Pardo-González JE, Callac P, 2011. Indoor method of composting and genetic breeding of the strains to improve yield and quality of the almond mushroom Agaricus subrufescens. In: Mushroom biology and mushroom products; Savoie JM, Foulongne-Oriol M, Largeteau M, Barroso G (eds.), pp: 419-427.
- Zied DC, Gea FJ, Pardo-Giménez A, 2012a. Enhancing the medicinal properties of Agaricus subrufescens by growing practices. In: Mushrooms: types, properties, and nutrition. Andres S, Baumann N (eds.). Nova Sci Publ Inc, NY, pp: 173-194.
- Zied DC, Pardo-Giménez A, Minhoni MA, Villas RL, Álvarez-Ortí M, Pardo-González JE, 2012b. Characterization, feasibility and optimization of Agaricus subrufescens growth based on chemical elements on casing layer. Saudi J Biol Sci 19: 343-347. https://doi.org/10.1016/j.sjbs.2012.04.002
- Zied DC, Pardo-Giménez A, Pardo JE, Dias ES, Carvalho MA, Minhoni MTDA, 2014. Effect of cultivation practices on the β-glucan content of Agaricus subrufescens basidiocarps. J Agr Food Chem 62: 41-49. https://doi.org/10.1021/jf403584g
- Zied DC, Pardo JE, Dias ES, Pardo-Giménez A, 2017. Characteristics, production and marketing of the Sun mushroom: the new medicinal cultivated mushroom. In: Edible and medicinal mushrooms. Technology and applications; Zied DC, Pardo-Giménez A (eds). John Wiley & Sons Ltd, Chichester, West Sussex, UK, pp: 361-384. https://doi.org/10.1002/9781119149446.ch17
- Zied DC, Caitano CEC, Pardo-Giménez A, Dias ES, Zeraik ML, Pardo JE, 2018. Using of appropriated strains in the practice of compost supplementation for Agaricus subrufescens production. Front Sustain Food Syst 2: 26. https://doi.org/10.3389/fsufs.2018.00026